
Program Transformation Techniques 
in Program Generation 

Pacific Software Research Center 
March 28, 2000 

CONTRACT NO. F19628-96-C-0161 
CDRL SEQUENCE NO. [CDRL 0002.23] 

Prepared for: 
USAF 

Electronic Systems Center/AVK 

Prepared for: 
Pacific Software Research Center 

Oregon Graduate Institute of Science and Technology 
PO Box 91000 

Portland, OR 97291 

DISTRIBUTION STATEMENT A 
Approved for Public Release 

Distribution Unlimited 

X55IC QUALITY DaC?jJCTilI> 1 

20000MB U9 



Zip Fusion with Hyperfunctions 

John Launchbury, Sava Krstic and Timothy E. Sauerwein 

Oregon Graduatelnstitute 
{jl,krstic,sauer}9cse.ogi.edu 

1 Introduction 

Automatic removal of intermediate structures has been an 
exciting possibility for a long time, holding a promise of the 
best of two worlds: programming with explicit intermediate 
structures enables concise and modular solution to prob- 
lems; and the removal of the structures provides efficient 
run-time implementations. One particularly effective tech- 
nique is called the foldr-build rule [2, 1]. The rule exploits a 
convergence of three programming aspects—structured iter- 
ation, function abstraction, and parametricity—to achieve 
intermediate structure removal in a single transformation 
step. 

One shortcoming of the technique is that, up to now, it 
has not been clear how to fuse zip. The purpose of this 
paper is to extend the foldr-build technique, showing how 
both branches of zip can be fused concurrently. 

The paper is organized as follows. We review the foldr- 
build technique, then we introduce a new form of f oldr that 
enables coroutining, and show how this provides a solution 
to the zip problem. Then we present alternative models for 
coroutining folds, discuss implementation, and demonstrate 
full fusion. Finally, we give axiomatization for an abstract 
type that unifies the various models and we initiate a study 
of the abstract type that we hope will lead to a proof of 
correctness of the new fusion algorithm. 

2 Original Foldr-Build 

The key goal of foldr-build is to achieve fusion in one step. It 
achieves deforestation without the need for knot-tying search 
or extra analysis that are present in many other techniques. 
While foldr-build applies to other data structures, it has been 
used most extensively with lists. We follow this trend, and 
for most of the rest of the paper will focus on lists alone. 

The foldr-build idea has four key components: 

• List producing functions are abstracted with respect to 
cons and nil; 

• The list is reconstructed with a known function build 
denned by build g = g  (:)   []; 

• Polymorphism is used to be sure that abstraction has 
been complete; 

• List consumers are defined using f oldr. 

An example of a definition that exhibits these characteristics 
is 

map f xs = build  (\c n -> foldr  (c   .  f)  n xs). 

It has often been observed that the effect of f oldr is to 
replace the conses and nil of its list argument with the func- 
tion areguments provided. The foldr-build theorem asserts 
that if a list producer has been properly abstracted with re- 
spect to its conses and nil, then the effect of f oldr on the 
list can be achieved simply by function application. This is 
expressed by the following theorem. 

Theorem 1. [2] If for some type a a function g has the 
polymorphic type 

g  ::  forall b  .   (a->b->b)  -> b -> b 

then for all k and z we have that 

foldr k z  (build g)  = g k z. 

The proof follows pretty immediately from the para- 
metricity theorem implied by the type of g. 

To see the power of the theorem, consider the following 
additional definitions 

sum xs = foldr (+) 0 xs 
down m = build (\c n -> 

let loop x = 
if x==0 then n else c x (loop (x-1)) 

in loop m) 

as used in the expression sum (map sqr (down z)). Ex- 
panding the definitions and applying the foldr-build theorem 
proceeds as follows. 

sum (map sqr (down z)) 
- foldr (+) 0 (build (\c n -> 

foldr (c . sqr) n (down z))) 
= foldr ((+) . sqr) 0 (down z) 
= let loop x = 

if x==0 then 0 else sqr x + loop (x-1) 
in loop z 



In just a couple of simple transformation steps, we have 
eliminated the intermediate data structures, and obtained 
a purely recursive definition of the computation. The cost 
is simply the somewhat arcane style of function definition 
required for list generators/consumers, but this can largely 
be obtained automatically from the more usual definitions 
[6]. 

Foldr-build works beautifully for a wide range of list pro- 
cessing functions but, unfortunately, zip presents us with 
one big fly in the ointment. By using a higher-order in- 
stance of foldr we can define zip as a fold on one of the 
input lists; the other list is passed as an inherited attribute 
as follows: 

zip xs ys = build (\c n -> 
let cl x g  □  = n 

cl x g (y:ys)  = c  (x,y)   (g ys) 
in 

foldr cl  (\ys -> n)  xs ys) 

Using this technique, we could define two asymmetric ver- 
sions of zip. Then, by using one or the other of these we 
can fuse a left branch or a right branch computation, but 
not both branches at the same time. It pretty much became 
accepted folklore that zip cannot be defined as a fold on 
both branches at the same time. Now we know that is not 
the case. 

Before we address coding zip as a fold over both in- 
puts concurrently, we will digress for a moment to explore 
further the relationship between build and foldr. Let us 
define foldr' to be the same as foldr except that the list 
argument comes first. We could then give it the following 
(non-Hindley-Milner) type: 

foldr'   ::   [a]   ->  (forall b  .   (a->b->b)  -> b -> b) 

That is, foldr' maps from the list domain to the same 
type that arguments to build have. Furthermore, the foldr- 
build rule translates into foldr* (build g) = g. Given 
that build (foldr' xs) = xs (simply expand the defini- 
tions), we see that foldr' is the inverse to build. This 
inverse relationship is obscured with the order of arguments 
used by foldr. 

Consequently, when we come to define new versions of 
foldr we will adopt the practice of placing the list argument 
first. 

3     Coroutining Folds 

The key step towards including zip within the scope of foldr- 
build comes by giving fold an extra argument that behaves 
as a coroutining continuation: 

fold   G c n = \k -> n 
fold   (x:xs)  c n = \k -> c x  (k  (fold xs c n)) 

We will explicitly avoid any premature commitment to types 
at this stage: the implication of types will come later. As it 
is, the definition above would be rejected by Haskell, but let 
us proceed nonetheless. The intuition behind the definition 
is that the cdfold function receives an interleaving continu- 
ation k, and applies the "cons function" c both to x and to 
the result of applying k to the recursive call of fold. Note 
that the continuation k is not provided as an argument in 
the recursive call of fold. Instead, k takes the recursive call 
of fold as its own interleaving continuation, and would be 
expected to call it with a new continuation. 

As an example, consider the case where the interleaving 
continuation is another instance of fold itself. 

fold  [xl,x2,x3]   c n  (fold  Cyl,y2]  d m) 
= c xl  (fold  Cyl,y2]  d m (fold  [x2,x3]   c n)) 

= c xl  (d yl   (c x2  (d y2  (c x3 
(fold   []  d m (fold  []   c n)))))) 

= c xl  (d yl   (c x2  (d y2  (c x3 m)))) 

The folds over the x and y elements each invoke the other 
in turn, and thereby produce the interleaving effect. 

There are two useful operators on interleaving computa- 
tions, defined as follows. 

self k = k self 
(f # g)  k = f  (g # k) 

The operator self acts as a trivial continuation, # as a 
composition operation. So for example, the expression 
fold xs c n self is equal to foldr c n xs. At each level 
of the recursion, self simply hands control back to fold. 
The role played by # is complementary. If we need to inter- 
leave three or more computations, we do so using #. The 
combined computation f # g when given a continuation k 
invokes f with continuation g # k. When that continuation 
is invoked (assuming it ever is) then g # k will be applied to 
some follow-on from f, f' say. Then (g # k) f' will invoke 
g with continuation k # f', and so on. A simple exercise 
which demonstrates this behavior is to reduce the expression 

(fold  [xl,x2,x3]   c n # 
fold  [yl,y2]  d m)  fold  [zl,z2]   e p 

The result is the interleaving of the computations over the 
three lists. 

Theorem 2. [4] The operation # is associative, and self 
is a left and right identity for #. 

Using this result, the interleaving of folds over two lists 
above can be written as 

(fold   [xl,x2,x3]   c n    #    fold   [yl,y2]   d )   self. 

It should be apparent, now that we have a version of fold 
that can interleave computations on multiple lists, that zip 
is now definable in terms of independent folds on its two 
branches, thus: 

zip xs ys = 
(fold xs  c   []     #    fold ys c Nothing)   self 

where 
c x Nothing =  [] "~ 
c x  (Just   (y.xys))  =  (x,y)   :  xys 
d y xys = Just   (y.xys) 

Note that while c is strict—the presence or absence of a y 
element is needed to know whether to produce a new output 
element—the d function is not, thus zip has its usual lazy 
behavior. 

4    Typing 

The definition of fold above would be rejected by HaskelVs 
typechecker on the grounds of unification requiring an infi- 
nite type. The type equation that needs to be solved is 



Hab = Hba->b, 

which when expanded gives the infinite type 

H a b =  (((...   -> a)   -> b)   -> a)  -> b. 

Interestingly, all occurrences of b are in positive (covari- 
ant) positions and all occurrences of a are in negative (con- 
travariant) positions. In effect, a acts as an argument type, 
and b acts as a result. That is, the type H a b is a kind of 
function from a to b. Later on, we demonstrate that Hab 
can act like a layered stack of functions from a to b. We use 
the term hyperfunction to express this. 

To code hyperfunctions in Haskell we introduce H as a 
newtype, and define appropriate access functions. 

newtype H a b = Cont   (H b a -> b) 

invoke   ::  Hab->Hba->b 
invoke   (Cont f)  k = f k 

base :: a -> H b a 
base p = Cont (\k -> p) 

(«) :: (a -> b) -> H a b -> H a b 
f « q = Cont (\k -> f (invoke k q)) 

lift :: (a->b) -> H a b 
lift f = f « lift f 

self :: H a a 
self = lift id 

(#) :: H b c -> H a b -> H a c 
f # g = Cont (\k -> invoke f (g # k)) 

run  ::  H a a -> a 
run f = invoke f self 

fold  ::   [a]   ->   (a -> b -> c)   -> c -> H b c 
fold  □   c n = base n 
fold  d:xs)  c n = c i « fold is c n 

The use of the constructor in the definition of H and 
the associated access functions obscure some of the def- 
initions a little. The («) operator acts rather like a 
cons operator, taking a function element f and adding to 
the stack of functions q. Without types we could define 
it by (f«q) k = f (k q). The lift operator takes a 
normal function f and turns it into a hyperfunction by 
acting as f whenever it is invoked. If we were to ex- 
pand its definition (and again present it untyped) we get 
lift f k = f (k (lift f)). Interestingly, the self oper- 
ator is simply an instance of lift. The type of # makes it 
clear that it is acting as a composition operator. In fact, 
hyperfunctions form a category over the same objects as the 
base functions use, and lift is a functor from the base cate- 
gory into the hyperfunction category (Theorem 2). We shall 
return to this point later. 

The (re-)definition of fold makes it clear that it is an 
instance of the usual f oldr as follows. In fact, the following 
two equations hold 

fold xs c n = foldr  (\x z -> c x « z)   (base n)  xs 
foldr c n xs = run  (fold xs  c n) 

showing that fold and foldr are equivalent in the sense 
that one can be defined in terms of the other. 

5    Fold-Build 

As in the original foldr-build work, we now define a build 
function which ensures that the list generator function is 
suitably abstracted. 

build  :: 
(forall   (b,c).(a->b->c) 

build g = run  (g  (:)   []) 
-> c -> H b c)  ->   [a] 

Initially we hoped that, as in the standard foldr-build 
case described by Theorem 1, the parametric nature of the 
type of g would imply the fusion law 

fold  (build g)   c n = g c n. 

Unfortunately, the law is not true in such generality. Its 
failures, however, are of the nature that seems extremely 
unlikely to have adverse effects in applications. This leads 
us to conjecture the essential correctness of the law: // a de- 
forestation algorithm uses hyperfunctions and the fold-build 
law in a controlled way, then it will transform any program 
into an equivalent one. 

We will discuss the conjecture some more in later sec- 
tions. Now, assuming it is safe to work with the fold-build 
law, we can start putting it into practice. As a first example, 
consider fusing the program 

sum  (zipW  (*)   (map sqr xs)   (map inc ys)) 

where zipW is a zipWith-like function whose definition is 
similar to the definition of zip we saw earlier: 

zipW f xs ys = build  (zipW  f xs ys) 
zipW  f xs ys c n = 

fold xs cl n    #    fold ys c2 Nothing 
where 

cl x Nothing = n 
cl x  (Just   (y.xys))  = c  (f x y)  xys 
c2 y xys = Just   (y.xys) 

The other list processing functions are defined using build 
and fold more or less as usual: 

map f xs = build  (\c n -> fold xs  (c  .  f)  n) 
sum xs = foldr  (+)  0 xs 

The fusion proceeds through beta reduction and appli- 
cation of fold-build: 



sum (zipW (*) (map sqr xs) (map inc ys)) 
= run 

(fold (zipW (*) (map sqr is) (map inc ys)) (+) 0) 
= run 

(fold (map sqr is) c 0 
# fold (map inc ys) d Nothing) 
where 
c x Nothing      = 0 
c i (Just (y.iys)) = (i * y) + iys 
d y xys = Just (y.xys) 

= run 
(fold xs (c 
vhere 

c x Nothing = 0 
c x (Just  (y.xys))  =  (x * y)  + xys 
d y xys = Just   (y.xys) 

= run 
(fold xs c 0 # fold ys d Nothing) 

where 
c x Nothing = 0 
c x  (Just   (y.xys))  =  (sqr 

data L a b = Cons   (a->b)   (L a b) 

(#)   :: 
(Cons 

lift   : 
lift i 

L b c - 
f fs)  # 

> L a 
(Cons 

b -> L a c 
g gs)  = Cons (f   .  g)   (fs # gs) 

(a->b)   -> L a 
= Cons f  (lift 

sqr)  0 # fold ys   (d  .   inc)  Nothing) 

x * inc y)  + iys 
d y xys = Just  (y.xys) 

The intermediate lists produced by the two uses of map 
have both been fused away, even though they occurred in 
separate branches of the zip. 

Stepping back to gain a wider perspective is probably 
useful at this point. Simple folds have been well studied. 
These are uses of fold at ground types, that is, that build 
non-function structures. In this style of use, the fold con- 
structs synthesized attributes only, and foldl and foldr 
more or less act as duals to each other. Once we allow folds 
to produce functions as their results, we gain significant ex- 
tra power. The function arguments allow us to model inher- 
ited attributes, and foldl is seen clearly as an instance of 
foldr (and not the other way around). 

foldl c n xs = foldr  (\x g z -> g  (c x z))  id is 

When we go further and allow folds to produce hyperfunc- 
tions, we allow coroutining which permits distinct fold com- 
putations to be interleaved. Thus we have to depart from 
the usual language of attribute grammars with inherited and 
synthesized attributes, and now talk of attributes that flow 
across the tree structure, between the nodes of different sub- 
trees that are at the same level. It is in this setting that a 
(nearly) symmetric definition of zip becomes possible. 

6    The Stream Model 

The elements of H we have been using behave like a stream 
of functions: some work is performed at first, and then the 
remainder is given to the continuation. When the continua- 
tion reinvokes the remainder a little more work is done, and 
again the rest is given to its continuation. In other words, 
work is performed piece by piece with interruptions allowing 
for interleaved computation to proceed. 

This intuition leads us to represent hyperfunctions ex- 
plicitly as streams. We use the name L for this model. 

run 
run 

(«) 
f  « 

base 
base 

::  L a < 
(Cons f 

L    "> 

fs) f   (run fs) 

(a->b)  -> 
= Cons f p 

L a b -> L a b 

:  a -> L b a 
= lift   (const x) 

invoke 
invoke fs 

L a b -> L b a 
gs = run  (fs # 

-> b 
gs) 

The operation fold is defined in terms of base and « 
as in Section 4. 

One interesting aspect of this model is that run is more 
naturally primitive than invoke, whereas in the previous 
model the opposite was the case. Furthermore, the iden- 
tity and associativity laws between # and self (still defined 
by self = lift id) become very easy to prove just by list 
induction and properties of composition. In contrast, the 
corresponding theorems about the H model turned out to be 
rather challenging, to say the least [4]. 

The stream of functions acts like a fix-point waiting to 
happen. The stream can be manipulated in two different 
ways: either the functions are interspersed with another 
stream of functions by means of #, or all the functions are 
composed together by run. In this way, run ties the recursive 
knot, and removes opportunities for further coroutining. 

The behavior of fold in this model is instructive, as seen 
in this example: 

fold  [xl,x2,x3]   c n 
= Cons   (c il)   (Cons  (c i2) 

(Cons   (c i3)   (Cons   (Const n)   ...))) 

where the dots indicate an infinite stream of Const n. Thus 
fold turns a list of elements into an infinite stream of partial 
applications of the c function to the elements of the list. At 
this point we might pause and ask whether we have actually 
gained anything. After all, we have simply converted a list 
into a stream. Even worse, the much vaunted definition of 
zip turns out to be defined in terms of #, which is defined 
just like zip in the first place! However, the stream is merely 
intended to act as a temporary structure which helps the 
compiler perform its optimizations. As with H^the L model 
can be used for fold-build fusion, and the stream structures 
are optimized away. Any that exist after the fusion phase 
ought to be removable by inlining the definition of run. In 
other words, the stream structure simply should not exist 
at run-time—its purpose is compile-time only. 

To demonstrate this really is feasible, we introduce a 
variation of this model in the next section, and describe our 
implementation experience using it. 

7    Fusing with Recursive Generators 

One strength of the original foldr-build is that it could fuse 
with recursive generators for lists, often ending up with com- 



putations that had no occurrence of lists whatsoever—the 
initial review in Section 2 above contained one such example. 
In one sense it was easy to achieve this. By restricting fusion 
to act only ever along a single branch of zip-like functions 
(i.e. functions consuming multiple input lists), we always 
ended up with a single ultimate origin for the computation. 
All foldr-build had to do was to place the subsequent pro- 
cessing of list elements into the appropriate places of this 
(arbitrarily recursive) computation and we were done. 

In contrast, multi-branch fusion may have many sources 
each acting as a partial origin of the computation. To 
achieve fusion, we would need to combine multiple (abitrar- 
ily recursive) generators. This is very hard in general. One 
way to make the problem tractable is to focus on recursive 
generators that are state machines, also known as tail calls 
or anamorphisms. This leads us to yet another model where 
we represent the stream of functions of the L model as a state 
machine, hiding the type of the state by using an existential 
type. 

data A a b = 
forall u . Hide (u -> Either b (a -> b,u)) u 

(#) :: A b c -> A a b -> A a c 
Hide g I # Hide g' i' = 

Hide 
(\(z,z') -> case g z of 

Left n    -> Left n 
Right(f,y) -> case g' z' of 

Left m      -> Left (f m) 
Right(f\y') -> Right (f . f, (y,y'))) 

(x,x') 

lift :: (a->b) -> A a b 
lift f = Hide (\u -> Right (f, u)) (error "Null") 

run :: A a a -> a 
run (Hide f v) = loop v 

where 
loop x = case f x of 

Left n    -> n 
Right(h,y) -> h (loop y) 

fold :: [a] -> (a -> b -> c) -> c -> A b c 
fold xs c n = 

Hide (\ys -> case ys of 
[] -> Left n 
(w:ws)   -> Right   (c w.ws)) 

xs 

The form of the type declaration is a little misleading and 
needs to be understood correctly. It gives Hide the type 

Hide :: forall u . 
(u -> Either b (a -> b,u))   -> u -> A a b 

while introducing Hide as the sole constructor of A ab. 
Interestingly, once again the choice of the model has af- 

fected which primitives are natural to define. This time the 
(«) operator does not look the most natural and fold is 
defined directly. 

Let's put these definitions to work. We define a couple 
of typical generators. 

down z = build  (down'  z) 

down'   ::  Int ->   (Int -> b ->  c)  -> c -> A b c 
down'  w c n = Hide   (\z ->  if z<=0 then Left n 

else Right   (c z,z-l)) 
w 

upto  i j  = build  (upto'   i j) 

upto'   ::  Int -> Int ->  (Int -> b -> c)  -> c -> A b c 
upto'   a b c a = 

Hide  (\(i,j)   -> if i>j  then Left n 
else Right  (c i,(i+l,j))) 

(a,b) 

and use them in fusing the expression 
sum (zipW (+) (upto 2 10) (down 6)). The various 
steps are given in Figure 1, but we note that the method is 
sufficiently powerful to remove all the intermediate lists in 
this example, leaving the recursive pattern 

loop  ((2,10),6) 
where 
loop  ((i,j),z)   = if i>j  then 0 else 

if z<=0 then 0 else 
(i*z)  + loop  ((i+l,j),z-l) 

Implementation 

An early version of these ideas was presented to the IFIP 
working group on functional programming (WG2.8, 1999) 
immediately after Simon Peyton Jones had presented the 
new rule-based transformation engine built into the Glas- 
gow Haskell Compiler GHC [7]. After being challenged to 
demonstrate the workability of both sets of ideas by using 
the rule system to implement this new version of fold-build 
(and being given only one evening in which to do so!), thanks 
entirely to Simon's skill and the power and flexibility of the 
GHC Rule Engine, this was accomplished. 

We began by using a slightly different model than the A 
model above, relying on constant functions to achieve the 
effect of ending the streams after a finite time: 

data A'  a b = 
forall u  .  Hide   (u ->  (a -> b,u))  u 

The corresponding definitions of the various operators for 
the A' model are simpler than for A above. We added all the 
new definitions of the operators, including fold and build, 
we defined functions such as map, zip, and upto in terms 
of them, and we added the new fold-build rule. The re- 
sult was only partially successful. It turned out that GHC 
was unable to spot that it could safely perform some useful 
simplifying transformations, and so the fusion process was 
halted prematurely. 

In order to fix this, the A model was used. By using ex- 
plicit constructors, the compiler could tell easily that case 
expressions would cancel out with constructors, and the fu- 
sion process ran to completion. 

8     The Type of Build 

We now turn to address the correctness of the new fold-build 
law. The law as stated in Section 5 can fail for more than 



sum (zipW (*) (upto 2 10) (down 6)) 
= run (fold (zipW (*) (upto 2 10) (down 6)) (+) 0) 
= run (zipW (*) (upto 2 10) (down 6) (+) 0) 
= run (fold (upto 2 10) c 0 # fold (down 6) d Nothing) 
where 

c z Nothing      = 0 
c i (Just (y.xys)) = (x * y) + xys 
d y xys = Just (y.xys) 

= run (upto* 2 10 c 0 # down' 6 d Nothing) 
where 

c x Nothing      = 0 
c x (Just (y.xys)) = (x * y) + xys 
d y xys = Just (y.xys) 

= run (Hide (\(i,j) _> if is,J then st0P ° else ^c i»(i+l.j))> 
(2,10) 

# 
Hide (\z -> if z<=0 then stop Nothing else (d z,z-l)) 

6) 
where 

c x Nothing      = 0 
c x (Just (y.xys)) = (x * y) + xys 
d y xys » Just (y.xys) 

= run (Hide (\((i,j),z) -> case if i>j then Left 0 else Right (c i,(i+l,j)) of 
Left n     -> Left n 
Right (f,y) -> 

case if z<=0 then Left Nothing else Right (d z,z-l) of 
Left m      -> Left (f m) 
Right (f\y') -> (f . f\ (y,y'))) 

((2,10),6)) 
where 

c x Nothing      = 0 
c x (Just (y.xys)) = (x * y) + xys 
d y xys = Just (y.xys) 

= run (Hide (\((i,j),z) -> if i>j then Left 0 else 
let (f.y) = (c i,(i+l,j)) in 
if z<=0 then Left (f Nothing) else 
let (f'.y') = (d z.z-1) in 
(f . f>,  (y,y*))) 

((2,10),6)) 
where 

c x Nothing      = 0 
c x (Just (y.xys)) = (x * y) + xys 
d y xys = Just (y.xys) 

= run (Hide (\((i,j),z) -> if i>j then Left 0 else 
if z<=0 then Left 0 else 
(\w -> (i*z)+w, ((i+l,j),z-l))) 

((2,10),6)) 
= loop ((2,10),6) 
where 

loop ((i,j),z) = if i>j then 0 else 
if z<=0 then 0 else 
(i*z) + loop ((i+l,j),z-l) 

Figure 1: An example of fusion. 



one reason. In this section we fix a typing problem. Other 
points are discussed in the next section. 

A counterexample to the law is provided by the function 

bad_g c n =  (\x -> c 5 bottom)   « bottom. 

Indeed, fold (build bad_g) c n = c 5 « bottom, and 
this is different from bad_g c n. 

Unfortunately this is not just a technical problem, but is 
directly observable at the level of program fusion. Consider 
the expression 

zip  (build one)   (build bad.g) 
one c n = c 1  « base n 

Without fusion, the expression evaluates to [(1,5)]. On 
the other hand, after fusion, we get the expression 

let c x Nothing =   [] 
c x  (Just   (y.xys))   =  (x,y)   :  xys 
d y xys =  Just   (y.xys) 

in 
run  (one  c   []   # bad d Nothing) 

where the local functions c and d come from the definition 
of zip. This expression evaluates to (1,5) :J- which is less 
defined than the expression we started with. The problem is 
that bad_g fails to return control back to the first list, and 
so it is not able to complete the list. 

The undefined value bottom is at the heart of the prob- 
lem. Since it exists in every Haskelltype, the function bad_g, 
knowing about it, is at liberty to manufacture the unfortu- 
nate value c a bottom. A richer type system can prevent 
the above from happening. For example, one can use the 
type system of Launchbury and Paterson [5] that distin- 
guishes types with bottom (pointed types) from general types 
that might not contain bottom. Noticing that the construc- 
tion of the recursively defined type H b c requires only that 
c be pointed can be used to give a more constrained type to 
the source domain of the function build: 

build  ::   (forall b  .  Pointed c  . 
(a->b->c)   -> c -> H b c)  ->  [a] 

The extended type system uses a separate quantifier 
Pointed for pointed types. Now, bad_g is ill-typed. 

With this intervention in the type system, we can char- 
acterize the elements for which the fold-build law is true. Let 
G(a) denote the domain 

forall b  .  Pointed c   .   (a->b->c)  -> c -> H b c 

and let S be the subset of G(a) defined coinductively by the 
condition that if g is in S, then there exists f and there exists 
w in S such that 

gcn = fcn«wcn 

The elements of G(a) belonging to S will be called linear. 

Theorem 3. An element g o/G(a) satisfies the identity 

fold  (build g)   c n = g c n 

if and only if it is linear. 

An informal analysis of the fusion algorithm suggests 
that the algorithm can never access other than linear ele- 
ments of G(a). Combined with Theorem 3, this observation 
corrobates the conjecture we made in Section 5. We leave 
Theorem 3 without proof here. 

9    The Abstract Type of Hyperfunctions 

Now that we have three models that support programming 
with coroutining continuations, it is natural to ask about the 
core functionality provided by all of them. So we embark on 
a study of an abstract type. We give the axiomatics satisfied 
by all three models. We establish some connections between 
the models and obtain some precise results about "linear" 
models which seem to be the most relevant in this context. 
The upshot of this research is our thesis that all models 
of the abstract type are potentially usable in deforestation 
algorithms, and that the implementors should feel free to 
search among various models and choose those that do the 
best job. 

9.1    Axiomatics 

Let us use the notation K a b for the abstract type of hyper- 
functions. We begin by requiring that K a b be functorial 
in its two arguments (contravariant in the first, covariant in 
the second) and that the domains K a b can be regarded as 
the arrow sets of a category that contains our base category 
of domains as a subcategory. All this (and more) is achieved 
by specifying the primitive operators 

primitive 
primitive 
primitive 

(#)   : 
lift 
run  : 

Kbc->Kab->K 
:   (a->b)   -> K a b 
K a a -> a 

which must satisfy the following conditions: 

axiom(l) (f # g)  # h = f #  (g # h) 
axiom(2) f # self = f = self # f 
axiom(3) lift   (f   .  g)  =  (lift f)  #  (lift g) 
axiom(4) run  (lift f)  = fix f 

where self :: K a a is defined by self = lift id. Thus, 
lift is a functor and viewing lift f as "f as a hyperfunc- 
tion", we see that the operation # extends the composition 
and run extends the fixpoint operator. It is also a simple 
matter to check that the following definition of mapK makes 
K itself a functor. 

mapK :: (a'->a) -> (b->b*) -> K a b -> K a' b* 
mapK r s f = (lift s) # f # (lift r) 

We can now define 

invoke :: Kab->Kba->b 
invoke f g = run (f # g) 
base :: b -> K a b 
base k = lift (const k) 

and it follows that run f = invoke f self,-showing that 
invoke could replace run as a primitive. 

The system we have built so far has a trivial model 
in which K a b = a -> b, the composition # is the or- 
dinary function composition, lift f = f, self = id and 
run = fix. However, in order to bring continuations into 
play, we need to add the primitive operation 

primitive     («)   : :   (a->b)   -> K a b -> K a b 

required for defining fold: 

fold  ::   [a]   ->   (a -> b -> c)   -> c -> K b c 
fold   Den = base n 
fold  (x:xs)   c n = c  x << fold xs c n 



The interaction of the new primitive with the others is de- 
scribed by the following axioms. 

axiom(5)   (f « p)  #   (g « q)  =  (f   -  g)  «  (p * q) 
axiom(6)  lift f = f  « lift f 
axiom(7)  run  ((f  « p)  # q)  = f   (run  (q # p)) 

This finishes the definition of the abstract type of hyper- 
functions. The trivial model is no longer possible. 

We will use the term hyperfunction model for models of 
our abstract type. They are functors K: £>op x V -+ V (where 
V is the underlying category of domains) with the additional 
structure consisting of operations #, run, lift and « satis- 
fying Axioms 1-7. 

All hyperfunction models have the property that distinct 
functions remain distinct when regarded as hyperfunctions. 
Any world of hyperfunctions thus contains a faithful copy of 
the world of ordinary functions: 

Theorem 4. The functor lift is faithful. (In other words, 
if lift f = lift g then f = g.) 

Proof. Define 

project   ::  K a b ->  (a -> b) 
project q k = invoke q (base k) 

It suffices to prove that project is a left-inverse of lift, i.e. 
that project  (lift f)  = f. Indeed, 

project (lift f) i 
= invoke (lift f) (base x) 
= run (lift f # base x) 
= run ((f « lift f) f base x) 
= f (run (base x # lift f)) 
= f (run (lift (const x) # lift f)) 
= f (run ((const x « base x) # lift f)) 
= f  (const x  (run  (lift f # base x))) 
- f x 

D 

To study relationships between hyperfunction models, 
it is useful to view the models themselves as objects of 
a category. The morphisms are natural transformations 
t :: Kab->K' ab preserving all the structure. More 
precisely, t must satisfy 

axiom(Ml) t  (f # g)  = t f #' t g 
axiom(M2) t  (lift f)  = lift' f 
axiom(M3) run f = run'   (t f) 
axiom(M4) t   (f  « q)   = f  «' t  q 

We will use morphisms below in the discussion of linear mod- 
els. 

9.2    The Three Models 

Theorem 5. H, L, and A are hyperfunction models. 

We leave out the details of the proof. The proof is sim- 
plest for the L model. Checking the axioms there is straight- 
forward. In fact, all the axioms except the seventh are also 
true in the "almost model" L' a b = [a -> b] of (finite or 
infinite) lists. 

As already indicated, it is far from being obvious that H 
is a model. Most of the difficulty is contained in Theorem 2 
above. 

In the case of the A model, we need to give a definition 
of «. Here it is: 

(«)   ::   (a -> b)   -> A a b -> A a b 
p «  (Hide f v)  = 

Hide  (\x -> case x of 
Nothing -> Right(p,   Just v) 
Just w    -> case f w of 

Left n -> Left n 
Right(h,y)   -> Right(h,   Just y)) 

Nothing 

Equality of terms of type A a b is proved by bisimulation. 
Checking the axioms is an excruciating exercise. 

9.3    Fold and build 

To use fusion, we need to be able to write f oldr in terms of 
fold. Here is the requisite law. 

Lemma 1. foldr c n xs = run (fold xs c n), in any 
hyperfunction model. 

Proof. Using fixpoint induction on xs, it suffices to 
prove the result for ± and D and also to show that 
foldr c n xs = run  (fold xs c n) implies 

foldr en  (x:xs)  = run  (fold  (x:xs)   c n) 

When xs is ±, both sides evaluate to ±. For the case when 
xs=0 we need to check that run (base n) = n, which fol- 
lows from the axioms as in the last five lines of the proof of 
Theorem 4. Finally, for the last part, we have 

run  (fold  (x:xs)   c n) 
= run  (c x « fold cs 
= c x  (run  (fold es c 
= c x  (foldr c n xs) 
= foldr c n  (x:xs) 

c n) 
n)) 

D 

Every hyperfunction model has its own build function: 

build  ::   (forall b  .  Pointed c  . 
(a->b->c)   -> c -> K b c) 

run   (g   (:)   []) 
->   [a] 

build g 

As before, fold can be regarded as a function going in the 
opposite direction from build. In fact, an immediate con- 
sequence of Lemma 1 is that build is a left inverse of fold: 

Corollary 1. build (fold xs) = xs, in any hyperfunc- 
tion model. 

Thus, the two functions are full inverses of each other 
depending exactly on the truth of the fusion law: 

fold  (build g)  c n = g c n. — 

Unfortunately, we cannot expect the law to be true in 
general. To see why, notice first that Lemma 1 remains true 
if base in the definition of fold is replaced by any function 
base' which has the property run (base' n) = n. If base' 
is a different function from base, it would follow that there 
are two distinct functions fold and fold' which are both 
right inverses for build and, consequently, that the fold-build 
law is not true. An example when this actually happens is 
provided by the model A, with 

base'  n = Hide  (\u -> Left n)   (error "Null"), 

which is clearly not the same as 



base ii = Hide   (\u -> Right   (const n,  u) 
(error "Null"). 

In fact, we have used this function base' in place of base in 
the definition of fold! One can check that, in the model A, 

fold   Gen = base'  n 
fold  (x:xs)   c n = c I « fold xs  c n 

Thus, it turns out that a single model can support more 
than one meaningful fold function. Indeed, it seems reason- 
able to accept in the definition of fold any function base' 
that behaves like a "constant" hyperfunction in the sense of 
satisfying the identity 

invoke  (base'  n)  q = n. 

In H, the only function satisfying this identity is the standard 
base, so there are no alternative folds for H. Of course, this 
does not mean that the fold-build law holds in H. In fact, 
it seems appropriate to ask now if there is any model in 
which the law is true. We believe that the submodel Q of H 
defined below is such. However, more important than the 
quest for models satisfying the law is the task of proving our 
conjectured essential correctness—that the restricted use of 
the law is safe. We leave it to a future research to give a 
precise meaning of "restricted" and to prove the safety. All 
uses of the law that we make in this paper will fall into that 
class. 

9.4    Linear models 

The stream model is the simplest of our three; now we see 
that it is the simplest in general. 

Theorem 6. In the category of hyperfunction models, L is 
an initial object. 

Proof. Suppose inK  ::  L a b -> K a b defines 
a morphism from L to K. Axiom (M4) reads 
inK (Cons f fs) = f « (inK fs) and so it defines 
inK. Thus, inK is the only morphism from L to K if it 
actually is a morphism. We need to check the other three 
axioms for morphisms. They all turn out to be true; the 
proofs are straigtforward, using stream induction. The 
proof of Axiom (Ml) relies in particular on Axiom 5. 
Similarly, Axioms 6 and 7 are crucial for the proof of 
morphism axioms (M2) and (M3) respectively. D 

Let us call a hyperfunction model K linear if inK 
is a full functor (for every a and b, the function 
inK :: L a b -> K a b is onto). Thus, every hyperfunc- 
tion model contains a linear part—the image of inK. 

The model A is not linear since, for example, the func- 
tions base' n are not in the image of inA. The model H is 
not linear either, although it takes more effort to prove. (In 
fact, H is huge; it is just more difficult to reason about.) 

We can also use H to see that L is not the unique linear 
type. For example, by a simple computation, 
inH (Cons (const n) xs) = base n, so all streams in 
Lab whose first member is const n are mapped by inH 
to the same linear hyperfunction in H ab. Thus, the linear 
part of H is a linear hyperfunction model non-isomorphic to 
L. 

The just observed effect of constant functions in streams 
motivates the following definition. Let us say that two 
streams are similar if they are either equal or have a com- 
mon finite prefix whose last member is a constant function. 

This is an equivalence relation. We define Q a b to be the 
domain whose elements are its equivalence classes. 

Theorem 7. Q is a hyperfunction model, with operations 
induced from L. Moreover, Q is the linear part o/H. 

Proof. The first statement of the theorem can be proved 
directly in a straightforward manner. It also follows from 
the second statement, which is equivalent to saying that 
two streams have the same image under inH if and only if 
they are similar. We proceed to prove this statement and we 
claim that it follows from the following: In H, the equality 
f « p = f' « q occurs if and only if f=f' and either f is 
constant, or p=q. Omitting the proof of the claim, which is 
a simple inductive argument in both directions, we turn to 
the proof of the last equivalence. The "if part follows from 
the already mentioned fact const n « p = base n. 

For the "only if part, assume f « p = f'  « q. Using 
the computation 

invoke  (f « p)   (const n) 
= f  (invoke  (const n) p) f n 

we can conclude f n = f' n for every n, so f = f'. Now 
our goal is to prove that the assumption f « p = f « p» 
implies that f is constant or that p=p'. Suppose neither is 
true. Then invoke p q/ invoke p' q for some q and f n 
■fi f n' for some n and n'. Define k by 

k = Cont(\r -> case  invoke r q == invoke p q of 
True    -> n 
False -> n') 

Then 

invoke (f « p) k = f (invoke k p) = f n 
invoke (f « p') k = f (invoke k p') = f n' 

and we are done. D 

As already mentioned, Q is a candidate for a model where 
(unrestricted) fold-build law holds. The prominence of Q 
comes from its being "optimal" among linear models. Pre- 
cisely, in the subcategory (really a preorder) of linear hy- 
perfunction models, Q is a terminal object. This is a direct 
consequence of the following result. 

Theorem 8. Let K be an arbitrary hyperfunction model and 
inK :: L a b -> K a b as before. If two streams have the 
same image under inK, then they are similar. 

Proof. Suppose f and g are non-similar streams in L a b. 
Then we can write 

f = h_l « 
g = h_l « 

« h_n « 
« h_n « g 

where h_i are non-constant, and p and q are non-equal. 
We can reduce this more general situation to the case of 
L Bool Bool, where all functions h_i are the identity. More 
precisely, there exist r :: Bool -> a and s :: b -> Bool 
such that 

s # f # r = id «  ...  « id « p'  « f" 
s # g # r = id «  ...  « id « q'  « g" 

and p' and q' are non-equal. Let 

t = id « id «   ...   « id « base v 



with n+1 occurrences of id and with v being a fixed boolean 
value. We have 

s # f # r # t 
s # g # r # t 

= id «   ...   «id « p'   « base v 
= id «   ...   «id « q'  « base v 

and so 

run  (s # f # r # t)  = p'   (run  (base v))  = p'  v 
run  (s # g # r # t)  = p'   (run  (base v))  = q'  v 

By assumption, for some v these two values are non-equal 
and it follows that run (inK s # inK f # inK r # inK t) 
and run (inK s # inK f # inK r # inK t) are non- 
equal, so inK f and inK g are not equal. □ 

10     Conclusion 

The original motivation for this paper was to broaden the 
power of the fold-build fusion technique to be able to handle 
multiple input lists. In doing so, we stumbled on two other 
insights we did not expect. First, we came to realize that the 
fold function is even more powerful than we had previously 
thought. In particular, it came as a palpable shock that 
fold was able to express interleaving computations. The 
view of fold as a generic expression simply of inherited and 
synthesized attributes over tree shaped structures had be- 
come quite deeply ingrained. Whether this understanding of 
the coroutining capability of fold will lead to new functions 
and techniques remains to be seen, but it cannot but help 
in broadening our perspectives. 

Secondly, even though we have moved to use other mod- 
els as well, we have found the original hyperfunctions fasci- 
nating in their own right. They have been devilishly tricky 
to reason about directly, but now we know that they form 
a category, have a weak product and seem to fit nicely into 
Hughes arrow class [3]. Again, whether they will turn out 
to be useful in other applications remains to be seen. 

As to the main purpose of the paper: we have at last 
demonstrated that many occurrences of zip can be elimi- 
nated using the fold-build technique, leading to the fusion 
of multiple list generation routines. Our implementation is 
simple and it seems to work well, but as yet it is not clear 
how well in would work in large examples. The original 
foldr-build work was followed by a thesis which addressed 
the various techniques needed to make it truly practicable 
[1], and there is no reason to assume this more complex 
version would be any easier. 

Establishing correctness of our method turns out to be an 
interesting problem in itself. Since the crucial fold-build law 
does not hold in general, it seems unlikely that the method 
will be proved correct by simple reasoning. On the other 
hand, it seems clear that the weaknesses of the law will 
not be exposed in the limited context of deforestation algo- 
rithms. Attempts to turn this intuitive understanding into 
proof are underway. 

Unfortunately, it appears that the inclusion of zip into 
fold-build may have come at the cost of eliminating reverse. 
The original technique handled reverse beautifully [6], 
but as yet we have been unable to integrate it into the 
new framework. This leads to the prospect of the com- 
piler having to choose—perhaps dynamically—between a 
zip-friendly and a reverse-friendly version of fold-build. 
Whether there is a single framework which encompasses 
both is unclear. 

11    Acknowledgements 

We are privileged to belong to the PacSoft research group at 
OGI; we received lots of helpful feedback and suggestions, in 
particular from Bruno Barbier and John Matthews. Partic- 
ipants at the WG2.8 working group meeting also provided 
very useful feedback,especially Richard Bird, Ralph Hinze 
and Erik Meijer. Finally, as noted in the text above, Simon 
Peyton Jones was the key driver in implementing these ideas 
within his rule-based transformation system for GHC. 

References 

[1] A. J. Gill. Cheap Deforestations for Non-strict Func- 
tional Languages (Ph. D. Thesis). University of Glas- 
gow, 1996. 

[2] A. J. Gill, J. Launchbury, and S. L. Peyton Jones. A 
short cut to deforestation. In Proceedings of the ACM 
Conference on Functional Programming Languages and 
Computer Architecture, pages 223-232, June 1993. 

[3] J. Hughes. Generalising monads to arrows. Science of 
Computer Programming, to appear. 

[4] S. Krstic and J. Launchbury. A category of hyperfunc- 
tions. Preprint, January 2000. 

[5] J. Launchbury and R. Patterson. Parametricity and un- 
boxing with unpointed types. In Proceedings the Sixth 
European Symposium on Programming, volume 1058 
of Lecture Notes in Computer Science, pages 204-218. 
Springer, 1996. 

[6] J. Launchbury and T. Sheard. Warm fusion: deriving 
build-catas from recursive definitions. In Proceedings of 
the ACM Conference on Functional Programming Lan- 
guages and Computer Architecture, pages 314-323, June 
1995. 

[7]  S. L. Peyton Jones. Private communication. 

10 


